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The early attempts a t  calculating effective transport properties of suspensions of 
interacting spherical particles resulted in non-absolutely convergent expressions. In  
this paper we provide a physical interpretation for these convergence difficulties and 
we present a new method of determining the effective transport properties which 
clarifies difficulties in existing methods. 

This method, which is described for simplicity in the context of the thermal con- 
duction problem, is based on an expression that gives the temperature gradient VT 
at a point x in the matrix in terms of integrals over the surrounding particles and an 
integral over a large surface r which encloses x and which we term the ‘macroscopic 
boundary’. Without the integral over J?, this expression for VT would be non- 
absolutely convergent, for the contribution to V T ( x )  from a distant particle is pro- 
portional to i / r 3 ,  where r is the distance of the particle from x .  On comparing the 
expression for VT with the formula used by Rayleigh (1892) in his investigation of 
the effective conductivity of a cubic array of spheres, we find that Rayleigh’s con- 
vergence difficulties arose simply from an incorrect assessment of the macroscopic 
boundary integral. 

By combining the expression for V T ( x )  with a formula for the dipole strength of a 
sphere placed in an ambient temperature field, we obtain a convergent expression 
relating the dipole strength of a sphere to integrals over the surrounding particles. An 
expression for the effective conductivity of a random suspension of spheres correct 
to  0 ( $ 2 )  is obtained simply by averaging this expression for the thermal dipole strength. 
By a similar procedure we obtain expressions for the effective viscosity and effective 
elastic moduli correct to O($2) .  Most of these results have been obtained by earlier 
workers using a ‘renormalization ’ procedure due to Batchelor; the method presented 
here has the advantage that the renormalization quantity arises naturally from the 
macroscopic boundary integral referred to earlier, so there is no uncertainty about its 
choice. 

1. Introduction 
A sample of a suspension or a composite material which contains a large number 

of particles embedded in a continuous matrix may in many cases be treated as a 
homogeneous material, and be assigned ‘effective ’ properties which are related to, 
but which may be quite different from, the properties of the matrix or the particles. 
In this paper we present a new method of determining the effective transport pro- 
perties of a suspension which will clarify the difficulties in existing methods described 
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by Jeffrey (1977). The transport property of interest may be the conductivity (electrical 
or thermal), the static dielectric constant, the viscosity or the elastic moduli. This 
method will be described iq the context of the thermal conduction problem, for the 
mathematical details are relatively simple in this case. I n  the final section we shall 
briefly describe the application of the method to the elasticity and viscosity problem. 

I n  the work that follows we make use of the formalism which has recently been 
developed (see Batchelor 1974 €or a review) for dealing with the problem of calculating 
effective transport properties. For statistically homogeneous materials, the effective 
transport properties can be defined in terms of volume-averaged quantities; in the 
case of thermal conduction the relevant quantities are the average temperature 
gradient ( V T )  and flux density (F), defined by 

and 

where V is a volume large enough to contain many particles. Since the equations 
which govern the temperature distribution in the suspension are linear, i t  follows 
that (F) and ( V T )  are linearly related; that  is 

(F) = - k*  . ( V T ) ,  (1.3) 

where k*  is termed the ‘effective conductivity tensor’. Our aim is to  derive an 
expression for k *. 

The quantity k*  can be related to an average over the particles in V. To obtain this 
relation, we write the expression (1.2) for (F) in the form 

where Zx  is the portion of V occupied by particles. I n  the matrix we have 

F = - k V T ,  

where k is the matrix conductivity, and on substituting this relation in the integral 
over the matrix in (1.4) we get 

where n is the number density of particles. The quantity ( S )  is the average of the 
dipole strength S of a particle in V ,  where 

(F) = - k ( V T ) + n ( S ) ,  (1.5) 

S = (1-a-’) F d V  = (1-a-’) xF.fidA. (1.6) 1% s,, 
Here ak is the particle conductivity, V, and A,  are the volume and the surface of the 
particle, and fi is the unit normal directed outwards from the particle surface. The 
quantity ( S )  is linearly related to ( V T ) ,  thus the conductivity may be determined 
from the average dipole strength with the aid of the expressions (1.3) and (1.5) for (F). 

Analogous results to those described above may be obtained for the other transport 
properties (Batchelor 1974). This formalism has been used in a number of recent 
investigations of the effective transport properties of suspensions and composite 
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materials (Batchelor 1970; Batchelor & Green 1972b; Jeffrey 1973; Chen & Acrivos 
1978). 

If the suspension is very dilute, the interactions between the particles may be 
neglected and the effective transport properties can be calculated from expressions 
for the dipole strength of a particle alone in an infinite matrix. At higher volume 
fractions the problem of determining the effective transport properties is more 
difficult, for the particle interactions must be taken into account. 

2. The effect of particle interactions 
2.1. Previous theoretical investigations 

The earliest study of the effect of particle interaction on conductivity was carried out 
by Rayleigh (1892), who obtained an expression for the conductivity of spheres in a 
cubic array. This expression provides the first few terms in the expansion of the 
conductivity as a power series in a ld ,  where a is the sphere radius and d denotes the 
centre-to-centre distance between nearest neighbours in the array. In  order to calculate 
the effect of surrounding particles on the dipole strength of a reference sphere, 
Rayleigh assumed that the ambient temperature gradient a t  the position of the 
centre of the reference sphere is equal to the average temperature gradient plus the 
sum of the fields produced by the surrounding 8pheres.t However, this sum is non- 
absolutely convergent; that is, the result depends on the order in which the contri- 
butions from the (infinite number of) surrounding spheres are summed. Rayleigh noted 
this, but nevertheless summed the contributions in a particular order, giving no real 
justification for doing so. 

Since that time there have been a number of investigations into the effective con- 
ductivity and static dielectric constant of various regular arrays. Levine (1966) and 
Zuzovsky & Brenner (1 977) avoided the convergence problem by formulating methods 
which rely on the fact that the temperature gradient is periodic, while other investi- 
gators adopted Rayleigh’s method without any attempt to justify the procedure for 
evaluating the non-absolutely convergent sum (Meredith & Tobias 1960; Bertaux, 
Bienfait & Jolivet 1975). This flaw in Rayleigh’s method was finally removed by 
McKenzie & McPhedran (1978), who introduced a modified version of the method 
which is free of convergence difficulties. In  this paper we show why the convergence 
problem arose in the first place, and we present a simple divergence-free method of 
calculating the effective transport properties which applies both to regular arrays and 
to random arrays of spherical particles. For the case of a regular array, this method 
is shown to be equivalent to that used by McKenzie & McPhedran. 

The problem of determining the effective transport properties of a random array 
of interacting spheres is more difficult than that for a regular array, and most of the 
theoretical investigations have been concerned with the problem of calculating the 
perturbation in the average dipole strength (S) caused by particle interactions in 
dilute suspensions. 

The probability that a particle in a dilute random suspension will have m neighbours 
within a distance of several radii is of order C$m, where C$ is the particle volume fraction. 

t We are referring here to  equation (62) of Rayleigh’s paper; the validity of the above 
interpretation of that equation will become clearer in 9 3, where the Rayleigh method is 
analysed in more detail. 
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If we assume that the interactions between particles fall off suficiently rapidly with 
increasing separation, then the perturbation in (S) is due mainly to pair interactions 
(m = 1)  when q5 < 1. Provided that this assumption is valid, the average dipole 
strength may apparently be written as 

where p(rIO)dV(r)  is the probability that the centre of a particle lies within the 
volume dV surrounding the point r, given that the centre of the reference sphere is a t  
the origin. The term SO denotes the dipole strength in the absence of particle interaction, 
and S’ is the amount by which the dipole strength of the reference sphere is altered by 
the presence of another sphere at r, neglecting all other particles. Unfortunately, the 
term S‘(r) falls off as l/lrl3 as jr/ -+a, and the integral in (2.1), like the sum encoun- 
tered by Rayleigh, is not absolutely convergent. 

I n  order to obtain an expression for (S) in terms of convergent integrals, Batchelor 
(see 1974 for review) devised a technique based on the observation that, associated 
with each of the transport problems, there is a quantity which had the same far-field 
dependence as S’ and which has a known average. We shall call this quantity the 
‘renormalizing quantity ’. By combining the general formula for (S) with the expres- 
sion for the average of the renormalizing quantity, it is possible to  relate (S) to  an 
integral which is dominated by pair interactions for q5 < 1, and thus a formula for 
(S) correct to O(q5) is obtained. This method, called here the ‘renormalization tech- 
nique’, has been employed in the derivation of expressions for the average velocity 
of sedimentation of spheres to order q5 (Batchelor 1972), the effective viscosity to order 
q52 of a suspension of rigid spheres in a Newtonian liquid (Batchelor & Green 1972b) and 
the effective conductivity of a random suspension of spheres to order q52 ( J e e e y  1973). 

Although the renormalization technique has been very successful, some workers 
have found that the correct choice of a renormalizing quantity is not always straight- 
forward, a matter which we discuss in $6.  I n  order to avoid the need for renormalizing, 
Willis & Acton (1976) devised an alternative method for obtaining a convergent 
expression for the average dipole strength of a random suspension of spheres, based 
on an integral-equation formulation for the elasticity problem. Unfortunately, this 
method is considerably more complicated than the renormalization procedure, and 
like that procedure it does not provide insight into the cause of the convergence 
difficulties referred to earlier. This latter point is important, for the non-absolutely 
convergent terms such as Rayleigh’s sum yield finite answers (which depend on the 
method of evaluation) and there is a temptation to regard the convergence problem 
as a mere inconvenience. 

2.2. Outline of the present paper 

In  this paper we present a method which resembles, but which is simpler than, Willis 
& Acton’s, and which may be applied to any of the transport problems associated with 
suspensions of spherical particles in random or regular arrays. The method is straight- 
forward, and i t  enables us to  provide a physical interpretation for the convergence 
difficulties described in the previous section. 

The procedure is based on a relation between the temperature gradient a t  a point 
x in a suspension and integrals over the surfaces of the surrounding particles, together 
with an integral over a surface I’ which endoses x and which has the following proper- 
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ties: (i) it  is sufficiently large to contain many particles and (ii) a t  each point on I’ 
the local radii of curvature of the surface are much greater than the length scales 
associated with the fluctuations in the temperature field (typically of the order of the 
particle diameter). We call I? a ‘macroscopic boundary’, since the length scales 
associated with the surface are much larger than those associated with the micro- 
structure. For such a surface it is shown that the local temperature and flux density 
which appear in the integral over I? may be replaced by the averaged quantities 
(7’) and (F). 

On applying the divergence theorem to this integral, we obtain a term which may 
be regarded as the field due to a continuous distribution of dipoles over the volume 
enclosed by r.t The contribution to V T ( x )  from particles which lie in adistant volume 
is cancelled by the contribution from the continuous distribution of dipoles contained 
within that volume, hence the expression for V T ( x )  converges. Thus when the integral 
over the macroscopic boundary is taken into account, there are no convergence 
problems associated with the expression for V T ( x ) .  In  $ 4  we show that Rayleigh’o 
convergence difficulties arose from an incorrect assessment of this macroscopic 
boundary term. By combining the expression for V T ( x )  with a formula for the dipole 
strength of a sphere placed in an ambient temperature field we obtain a convergent 
expression for the dipole strength of a reference sphere, which shows explicitly the 
effect of distant particles. 

In $ 5  we employ this result in a study of the problem of conduction through a 
random suspension of spheres. Jeffrey’s (1973) formula for the conductivity is obtained 
simply by taking the average of the expression for the dipole strength of a spherical 
particle. With this method there is no need for renormalizing, for the renormalizing 
quantity arises naturally from the macroscopic boundary term referred to earlier. 

In $ 6  we show how this method may be applied to the elasticity and viscosity 
problems, and we obtain expressions for the effective elastic moduli and viscosity, 
correct to O(qP). Finally, we discuss Chen & Acrivos’s (1978) calculation of the effective 
modulus of compression. In  this case the renormalization procedure is complicated 
by the fact that there are three renormalizing quantities to choose from. NO such 
complications arise if the method presented here is used, since the renormalization 
quantity is obtained directly from the macroscopic boundary term. 

3. An expression for the thermal dipole strength of a sphere in a 
statistically homogeneous suspension 

In this section we derive an important expression for the dipole strength of a 
spherical particle in terms of integrals over the surrounding particles, together with 
the dipole-field term referred to in the previous section. We begin by noting that, 
since the temperature field satisfies Laplace’s equation, the temperature a t  a point x 
in the matrix of a suspension may be related to integrals over the surrounding particles 
with the aid of Green’s Third Identity (Protter & Weinberger 1967, pp. 84), viz. 

t The resulting equation for V T ( x )  is analogous to Willis & Acton’s expression (2.7) for the 
strain in an elastic matrix. 
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where r = Ix-x’l, F’ = F(x’),  T’ = T(x’) and V’ = 8/ax’. Here I? denotes a closed 
surface enclosing x, di denotes the surface of the ith particle contained in I?, and A 
is the unit normal directed into the matrix, If the surface I? passes through the ith 
particle, then Ai denotes the closed surface of the part of the particle that lies within I?. 

With the aid of the divergence theorem we can convert the integrals over the surfaces 
of the particles to volume integrals: 

where is the volume of the ith particle and 

T(X) = F(x) + kVT(X) (3.3) 

may be called the ‘extra flux density’. This quantity is related to the polarization 
stress in elasticity and the polarization vector in dielectric theory. From (1.6) we see 
that the dipole strength of a particle is 

s q  TdV, 
vi 

and on comparing the expressions (1.5) and (3.3) for (F) and T we find 

(T) = n(S). (3.4) 

From (3.3) it  can be seen that the extra flux density T(X) is zero a t  points which lie 
in the matrix. Hence the sum of the volume integrals obtained by substituting (3.2) 
in the expression (3.1) for T ( z )  may be written as a single integral over the entire 
volume V contained within I?, and (3.1) becomes 

4‘, (g + T‘V‘ t) . AdA. 
T ( z )  = , f y f c . V ’ ; d V + -  1 7’ 1 

(3.5) 

Since we shall be concerned here with temperature gradients, we differentiate (3.5) 
to obtain an expression for the temperature gradient a t  a point in the matrix, viz. 

1 
7 ’ .  V’V’ - d V -- 

4nk ‘ S  , r 4 t k  f r  ( VT(x)  = -- 0‘ - F’ + kT‘V’V‘ 

where the minus signs on the right-hand side come from replacing V by -V’. A 
similar result which applies when the point x lies within a particle is used in $ 5; in 
this case the integral over V must be modified since 7 is non-zero at  r = 0. 

Equation (3.6) holds for any closed surface I? enclosing x, and we now consider the 
form which this equation takes if I? is a ‘macroscopic boundary’ (see $2) .  If the 
distance from x to the nearest point on I? is much greater than the distance between 
neighbouring particles, then the functions V’r-1 and (V‘V‘r-l) . fi are approximately 
constant over a portion of I? which cuts through many particles and so is large enough 
to determine an average. Thus the integral over I’ in (3.6) becomes 

1 - 4nk f r (V’ (F) + k(T’) V’V’ A) r . fid.4, 

It should be noted that the quantities (F) and (VT) are constant for a statistically 
homogeneous material, hence these terms could be taken outside the integral sign. 
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Substituting the above expression for the macroscopic boundary integral in (3.6), we 
find that the temperature gradient is given by 

1 
T’ . V’V’ - d V - ~ 

r 4kk f r  ( V ’  - ( F )  + k ( T ’ )  V’V’ 

Since the term V‘V‘r-1 is of order r-3, the integral over V in (3.7) is not absolutely 
convergent when taken by itself. However, the presence of the macroscopic boundary 
term causes the expression for V T ( x )  to converge, as we shall now show. We apply 
the divergence theorem to the surface integral in (3.7),  giving 

r 
1 

(V’ (F) + k ( T ’ )  V’V’ {(F) + kV(T’ ) }  . V’V’ 4 d V 
r 

( F ) + k ( T ’ ) V ’ V ’  

where rs denotes the surface of a sphere which lies within r and is centred on x, and 
V’ denotes the volume which lies between the surfaces r and rs. From the expression 
(1  5 )  for the bulk flux density, we see that the volume integral in (3.8) may be written as 

This quantity, divided by 4nk, may be regarded as the temperature gradient a t  x due 
to a uniform distribution of dipoles throughout V ‘ .  

On evaluating the integral over rs in (3.8) and substituting the resulting expression 
for the macroscopic boundary integral in (3.7), we obtain 

1 
r 

’ j (7’ - n ( S ) ) .  V‘V’ - d ~ ,  
n 1 1 

3k 47ik v, r 47ik p 
V T ( s )  = ( V T ) - - -  (S)+ T ’ . V ’ V ’ -  av-- 

(3.10) 
where V,  ( =  V -  V )  denotes the volume of the sphere with surface rs. 

To show that the integral over V’ in (3.10) converges, we note that for large r the 
quantity V‘V‘r-1 is approximately constant over regions which contain many particles, 
and hence to leading order we may replace T‘ in the integrand by its average value, 
n ( S )  [see (3.4)], provided that r is sufficiently large. Thus as r increases, the integrand 
diminishes more rapidly than r-3, and the integral converges. 

Since T = 0 in the matrix, we may neglect the integral over V,  in (3.10) if that  
volume lies entirely in the matrix. Thus in the limit as V,+O, (3.10) assumes the 
more compact form 

(3.11) 

which holds for points x which lie in the matrix. 
An integral equation analogous t o  (3.1 I )  was first obtained by Korringa (1973) for 

the elasticity problem, and this result was used by Willis & Acton (1976) for the cal- 
culation of effective elastic moduli. The derivation of (3.11) given here differs from 
that used by Korringa, in that we do not require the temperature to be given by 
( V T )  . x on the boundary of the suspension; instead we have used the fact that the 
material and the applied field are statistically homogeneous. 
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I n  order to obtain the required expression for the dipole strength of sphere j in 
terms of integrals over the surrounding particles, we begin by writing (3.10) in the 
form 

1 
4 ~ k  ' 1  V ,  r 

VT(x) = VTE(x) -~ T' . V'V' - d V ,  (3.12) 

where 
1 1 n(S ) .V 'V ' -dV  1 
r 4 ~ k  p r 

?z VTE(X) = (VT)-- T' .V 'V ' -dV+-  
3k 

i+i 
(3.13) 

and the sum extends over the spheres enclosed by the surface I?, except sphere j. 
I n  deriving this expression we have replaced the integrals of 7'. V'V'r-I which appear 
in (3.10) by a sum of integrals over the particles using the fact that  T = 0 in the matrix. 

The form of (3.12) is the same as that of the expression for the temperature-gradient 
field surrounding a single particle (sphere j) in an infinite matrix, TE(x) representing 
the temperature field in the absence of the particle. Now we may obtain the required 
expression for the dipole strength of sphere j from the formula for the dipole strength 
of a sphere placed in an ambient temperature field TE, viz. 

S = -4na3/3kVTE(x0), (3.14) 

where /3 = (a- l)/(a+ 2), xo denotes the centre of the sphere and a is the sphere 
radius. The derivation of this formula is given in the appendix. I n  low-Reynolds 
number hydrodynamics, expressions like (3.14) which relate sphere properties to 
parameters of the ambient field are known as 'FaxBn formulae'. 

The required expression for the dipole strength is obtained by combining the result 
(3.14) with the expression (3.13) for VTE,  which gives 

1 1 
i Vi r r 

Sj= So+/3q5(S)+/3a3 3 1 ~ ' . V ' V ' - d d - / 3 a ~  n ( S ) . V ' V ' - d V ,  (3.15) 

i i j  

where So = - 4na3/3k(VT) (3.16) 

is the dipole strength of the reference sphere in the absence of particle interaction. 
The expression (3.15) is valid if the volume V' has a spherical inner surface, concentric 
with sphere j. 

If the radius of this inner surface rs is much larger than the average distance 
between neighbouring particles, the contribution to Sf from particles which lie 
within V' is approximately cancelled by the dipole-field term 

1 
Pa3 1 n ( S )  . V T '  - d V ,  

T" r 

hence (3.15) may be written in the form 

(3.17) 

where the sum now only extends over the particles which lie within rs. An expression 
analogous to (3.17) forms the starting point for the derivation of the Clausius-Mosotti 
formula for the dielectric constant of a dense material (Panofsky & Phillips 1962); in 
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this case the expression is obtained by assuming that the suspension which lies outside 
rs may be treated as a continuous dielectric, and the term /3$(S) arises from the 
polarization charges on the surface I?,. 

4. Rayleigh’s non-convergent sum 
In this section we show why Rayleigh was able to obtain the correct expression for 

the conductivity of a cubic array of spheres by summing a non-absolutely convergent 
series in a particular order. To calculate the dipole strength of a sphere in a cubic 
array, Rayleigh assumed that the external field V T E ( x )  is given by ( V T )  plus the 
sum of the fields produced by the surrounding spheres. Rayleigh replaced the sur- 
rounding particles by a dipole and several higher-order poles, but for our purposes 
it is sufficient to consider the approximate form of Rayleigh’s expression obtained by 
replacing the surrounding spheres by dipoles, viz. 

1 
V T E ( x )  = ( V T )  -2 x S . V’V’ -. 

4nk i rt ’ 
i+ j 

where S denotes the (uniform) dipole strength of the spheres and ri is the distance from 
x to the centre of sphere i. (In Rayleigh’s notation, IVT,(x)l, I(VT)I and - ISI/4nk 
are denoted by A,,  H and B, respectively. The expression (4.1) is equivalent to the 
first of the equations (62) in Rayleigh’s paper, with the higher-order multipole terms 
such as B3 removed.) On combining (4.1) with the Faxen-type formula (3.14)) we get 

1 
S = SO+/3a3S. x V’V‘ 2 .  ( 4 4  

i 
icj 

As mentioned earlier, the sum of V‘V‘(ri)-l over the surrounding spheres is non- 
absolutely convergent, and unless the order of summation is specified the expression 
is meaningless. From (3.13) it can be seen that, in formulating the expression for 
VTE, Rayleigh incorrectly assessed the contribution from the macroscopic boundary 
(referred to, rather obscurely, as ‘the potential due to the sources at infinity other 
than the spheres ’, p. 489)) and this is why he obtained a non-convergent sum. 

The correct expression for S is obtained from (3.15)) viz. 

(4.3) 

where we have replaced the surrounding particles by dipoles. This expression con- 
verges as the volume V’ becomes infinite, thanks to the dipole-field term 

On comparing (4.3) with Rayleigh’s expression (4.2)) we see that both this dipole- 
field term and the term /3$S are absent. 

In order to evaluate the expression (4.2) Rayleigh summed the terms in the following 
way: he first calculated the sum over the spheres contained in an infinitely long 
cylinder of square cross-section. The axis of the cylinder was chosen to coincide with 
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one of the axes of the lattice and (VT) was taken to be parallel to this axis. By letting 
the cross-section of the cylinder become infinite, Rayleigh obtained a value for the 
sum. With the aid of (4.3) we can now see why this particular order of summation 
leads to the correct result. We let the volume V’ in (4.3) denote the volume of the 
cylinder described above. On applying the divergence theorem to the dipole-field 
term in (4.3), we get 

r (4.4) 

where x denotes the component of r in the direction of S, r denotes the surface of the 
cylinder, and as usual rs is a sphere centred on the point r = 0. For a cubic lattice 
S is parallel to (VT), and since (VT) is parallel to the cylinder axis it can be seen 
from symmetry considerations that the integral over r in (4.4) is zero. Evaluating 
the integral over rs in (4.4), we get 

1 4n s .SVV‘V‘ ; dV = - 3 s, 

and on substituting this result in (4.3), we obtain Rayleigh’s expression (4.2) for the 
dipole strength. Thus by summing the terms in a special way, Rayleigh was able to 
obtain the correct value for the dipole strength from an improper expression. 

For an array in which the lattice vectors are not mutually orthogonal, Rayleigh’s 
procedure runs into difficulties, for ( S )  and (VT) are not in general parallel for this 
type of material, and it is not easy to see how the sum in (4.2) should be evaluated in 
this case. No such difficulties are encountered in the application of (4.3) presented 
here, since the expression is absolutely convergent. Higher-order terms in the expres- 
sion for k* for this type of material may be obtained by replacing the spheres sur- 
rounding the reference sphere by dipoles and a number of higher-order poles, and 
coupling equation (3.15) for Si with Rayleigh’s expressions (62) for the higher-order 
multipole strengths of the reference sphere; the latter expressions are correct, for the 
contribution from distant spheres falls off faster than l/r3, and there is no macroscopic 
boundary term. 

This method is similar to that adopted by McKenzie & McPhedran (1978) in their 
study of the electrical conductivity of a simple cubic array of spheres. These authors 
modified Rayleigh’s expression (4.1) by replacing the average field (VT) by a term 
E,, referred to as ‘the external electric field’. By using the argument which was 
employed on the derivation of the Clausius-Mossoti formula (described at  the end of 
9 3) they show that 

E, = (VT)+ Ep ,  

where 
4nk 

These results correspond to equations (24) and (19) respectively of McKenzie & 
McPhedran’s paper. On applying the divergence theorem to the above integral and 
substituting the resulting expression for E, in place of (VT) in (4.1), we obtain the 
correct expression for VTE(x) .  The method presented here is similar to McKenzie & 
McPhedran’s method in that both make use of an expression for VTE(x)  of the form 
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(3.13). However the latter method is limited to conductivity-type problems for 
regular arrays of spheres. 

Although our method may be used for the determination of other transport pro- 
perties of regular arrays (O'Brien 19771, we shall not present the details here; instead 
we turn to the more important problem of determining the effective transport pro- 
perties of a random suspension of spheres. 

5. Conduction through a random array of spheres 
In this section we describe a procedure for obtaining the effective conductivity of a 

random suspension of spheres without the need for renormalizing. Our aim is to obtain 
an expression for the effective conductivity tensor k*, correct to 0(#2), where as 
usual $ denotes the particle volume fraction. From the expression (1.5) for the average 
flux density, it can be seen that to obtain the required formula for k* we need an 
expression for the average dipole strength (S) correct to O(#). 

We begin by writing equation (3.15) for the dipole strength of the reference sphere 
in the form 

1 
Si = So+P$(S)+4n/3a3k 2 V8(x i )  -@a3 n(S) . V f V f -  r d V ,  (5.1) 

z 
i+j 

where 
1 

4nk ' S  vi r 
VO(xJ = - 7' .VfVf  - dV 

may be regarded as the contribution to the external field at the centre of the reference 
sphere (sphere j) from sphere i, and xi denotes the position of the centre of sphere i .  

For convenience, we shall take our origin at the centre of the reference sphere. On 
taking the ensemble average of (5.1), we get 

(S) = S0+/3$(S)+Pa3Sm r=2a 

where (VO(rl0)) is the average value of VO(r), averaged over all configurations for 
which there is a sphere at r a,nd another a t  the origin. In deriving this result we have 
taken the inner surface of V f  in (5.1) to coincide with the surface of the reference 
sphere r = 2a. 

If there is no long-range order in the suspension, we have 

p(rl0) - n as r+w, 

4nk(VO(r10)) - (S) .VVr-I as r+w, 
and since 

the integral in (5.3) converges. 
We can write (5.3) in a more convenient form with the aid of the relation 

(S(O(r)) = So+4nk,!la3(VB(r10))+[/3$(S)-@a3~ n(S) .VV - 1 dV 
V(C) r 

+ @a3 1 { 4nk(VO(rf 10, r))p(r'IO, r) - n(S) . VV A] d V ]  , (5.4) 
V f  - V(r) r 

obtained by averaging (5.1) over all configurations for which there is a sphere a t  0 
and one a t  r. Here V ( r )  denotes the volume of a spherical particle, centred on r, the 
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term (S(O1r)) denotes the average dipole strength of a sphere centred on the origin, 
given that there is a sphere at  r, and similarly (VB(r‘l0, r)) is the average value of 
VO(r‘) averaged over all configurations for which there are spheres at 0, r and r’. 
p(r’l0, r) is the probability that a sphere lies in a unit volume about r’, given that 
there are spheres a t  0 and r. Since the quantities n and p(r‘l0, r) are O ( $ ) ,  we expect 
that the square-bracketed terms in (5.4) will also be O($) ,  hence we may write (5.4) 
in the form 4nk/3a3(VO(r10)) = (S(0Ir))- So+O($) .  

On substituting this expression for (VO(rJ0)) in (5.3), we obtain 

(S) = So +p+(S)  +I 
(5.5) 

To evaluate the integral in (5.5) we require an expression for (S(O(r)). If we neglect 
terms O ( $ ) ,  then (S(O(r)) is equal to the dipole strength S(0lr) of one of a pair of 
spheres with separation vector r alone in an infinite matrix with the far-field boundary 
condition VT(x)+(VT) at  points far from the particles. To show this, we take the 
average of the expression (3.11) for VT(x) over the configurations for which there is 
one sphere at  the origin and one sphere a t  r; this gives 

where the sum extends over the two spheres a t  0 and r respectively. For a pair of 
spheres alone in an infinite matrix, VT(x) is given by 

1 
VT(x) = (VT)- - J T(X’) .V’V’-dV.  

i = l 4 n k  J” r 

This expression has the same form as (5.6) with the O(+)  term removed, and i t  is not 
difficult to show from (5.6) and the analogous expressions for VT(x) in particles 1 
and 2 that the averaged field (VT(xJ0, r)) satisfies the same differential equation and 
boundary conditions, to O($) ,  as the temperature gradient field for the two-sphere 
problem ; hence 

On substituting this result in (5.5) we get 
(WJl r)) = S(Olr) +(a$). 

(S) = So+/3+S0+jm r=Za [{S(Olr)-So}p(r~O)-/3u3nSo.VV r +O(qP). (6.7) 

With the aid ofthe expressions (1.5) and (3.16) for (F) and So, we find from (5.7) that 
the bulk flux density is given by 

rrn r 

-pna3So.VV - dV.  (5.8) 
r ‘I 

We can write this expression in the same form as Jeffrey’s (1973) result (equation 
(3.13) in that paper), by noting that the temperature gradient at a point r caused by 
a single sphere a t  0 in an infinite matrix is given by 

SO 1 
4nk r 

VT(rl0) = (VT>+- . V V  -. 
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Combining this result with (5.8), we get 

(F) = - k ( V T )  - 3$kp(VT) (1 + $/3) 
m 

[{S(Ol r) - So}p(  r 10) - 4;rrkna3/3{VT( r 10) - ( V T ) } ]  d V ,  
+ Id. 

which is the same as Jeffrey’s expression for (F). 
Jeffrey obtained this result using the renormalization method described in 3 1 .  To 

apply that technique it is necessary to obtain a renormalizing quantity. The method 
presented here has the advantage that this renormalizing quantity arises naturally 
from the integral over the macroscopic boundary in the expression (3.7) for V T ( x ) ,  
and it is now clear that the convergence difficulties encountered in the past simply 
do not arise when the macroscopic boundary term is included. 

In their investigation into the effective elastic moduli of a random suspension of 
spheres, Willis & Acton (1976) make use of an integral equation which is analogous 
to the expression (3 .11)  for V T ( x ) .  With the aid of this expression, the authors obtain 
an integral equation for the polarization stress within a particle (equation (2.8) of 
that paper) of which the counterpart in the thermal problem would bet 

n 1 1 
3 477 i ~ ‘ 1  r 

k ( V T ) - -  (S)-- T.V’V‘  - dV 

+--t_ j n($) .V’V‘ T 4n r” 

where as usual /3 = (a - l)/(a + Z ) ,  and the sum extends over the spheres contained 
in V‘. 

On the assumption that only pair interactions need be considered in order to 
calculate (S) to O(#),  Willis & Acton replace this expression for the polarization 
stress bv 

r 
n 
3 

+ L j  477 T’‘ 

where the sum here extends over only two of the spheres in V‘, one of which encloses x 
(see equation (4.4) of their paper). This is an erroneous expression for T ( x ) ,  because 
it is inconsistent to neglect the contributions to ~ ( x )  from the other particles in V‘ 
while including the terms i n (  S )  and 

which arise from the fact that the material within V’ is a statistically homogeneous 
suspension. As a consequence the integral over V‘ is not absolutely convergent, and 

t This result is obtained by using en integral expression for the temperature at  a point x in a 
particle, similar to the expression (3.1) for the temperature in the matrix. An expression for 
VT(x) may then be derived by a similar procedure to that employed in the derivation of the 
expression (3.10) for VT in the matrix, and by combining this result with the formula 

7(x) = (1 -a) kVT(x), 

which is derived from (3.3), we obtain (5.9). 
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the authors (arbitrarily) choose V' to be a large sphere; for this choice of V', the 
integral is a constant, independent of the sphere radius. 

Willis & Acton use an iterative procedure to obtain an approximate solution to the 
integral equation (5.10) for r(x); for each iteration the integral over the neighbouring 
sphere and the quantity (S) in (5.10) are both calculated by using the formula for 
r(x) given by the previous iteration. This procedure results in an expression for r(x) 
as a power series in a/rs, where r, is the separation distance between the spheres. An 
expression for the dipole strength of the reference sphere, denoted here by S *( rs), is 
then obtained by integrating the formula for r(x) over the volume of the reference 
sphere. This quantity S*(r,) depends on the shape of the volume V'. 

In order to show how Willis & Acton obtain the correct expression for (S) by using 
the volume-dependent expression for S*(r,), we first integrate the formula (5.10) for 
r(x) over the volume of the reference sphere (sphere l), which gives 

S*(r,) = S0+/3q5(S)-pu3S n(S).V'V' - 1 dV+4nkpu3VB*(r,), (5.11) 
V' r 

where (5.12) 

Herer*(x) denotes the solution of the integral equation (5.10), and r denotes distance 
from the centre of the reference sphere. The expression (5.11) is equivalent to equa- 
tion (4.19) of Willis & Acton's paper, although in the latter case the quantity r*(x) 
is replaced by an approximate expression correct to order (u/r,)'. 

Using the averaging procedure adopted by Willis & Acton, we obtain from (5.11) 
the following expression for the average dipole strength: 

(S) = s O + p # ( S ) + p ~ ~ /  B' (4nk(Vs*(r))p(rjO)-n(S) .VV 

which is analogous to equation (4.20) of their paper. The quantityp(rl0) in (5.13) is 
the usual pair probability function. It is difficult to reconcile this method of averaging 
with the earlier step of neglecting all but one of the neighbouring spheres in V', for 
in this case we should expect that the pair probability function in (5.13) would depend 
on which spheres are ignored for each configuration in the ensemble; for example, if 
we ignore all spheres except the one which is nearest to the reference sphere, then the 
pair probability function would vanish with increasing r ,  whereas p (  r10) +n as 
Iri +a. 

In order to calculate (S) correct to O(q5) with the aid of (5.13) we require an expres- 
sion for (VB*(r)), correct to O(1). To obtain (VO*(r)) to this accuracy, we substitute 
for r* in (5.12) the solution to the integral equation 

T*(x) = -3p T*(x') .V'V' (5.14) 

obtained by neglecting the O(q5) terms in (5.10). In  neglecting these terms we have 
removed the dependence of r*  (and hence VB*(r)) on V'. It is not difficult to show that 
the integral equation (5.14) is identical to the equation for ~ ( x )  for the case of a pair 
of spheres alone in an infinite matrix with uniform temperature gradient (VT) far 
from the spheres. By integrating (5.14) over the reference sphere, we get 

4nkpu3VB*(r) = S(Olr)-So+O(q5) 
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and, on substituting in (5.13), we obtain the correct expression (5.7) for (S). Thus 
Willis & Acton’s procedure yields a result which does not depend on V‘ simply because 
the quantity V8*(r )  is only required to  0 ( 1 ) ,  and to  this order of accuracy, V P  is 
independent of P’. 

Although this procedure gives the correct result, i t  is complicated and it obscures 
the fact that  there are significant multi-particle and outer-boundary effects which 
must be taken into account, even though the final expression for ( S )  appears to 
involve only two-sphere interactions. 

6. The determination of the effective elastic moduli or the viscosity 
of a random suspension of spheres 

We now turn to the problem of calculating the effective elastic moduli of a random 
suspension of elastic spheres embedded in an elastic matrix. The problem of determin- 
ing the effective shear modulus for the case of incompressible particles and an in- 
compressible matrix is mathematically identical to  that of determining the effective 
viscosity of a suspension of spherical droplets immersed in a liquid matrix (Batchelor 
& Green 1972b, 3 7) for a given statistical geometry of the particles. Thus the results 
described here may also be applied to  the viscosity problem, although in that case 
the statistical properties of the particle configuration are affected by the bulk flow. 
In this section we assume that the relevant statistical properties of the configuration 
are given. 

Our aim is to determine the effective elastic moduli, correct to O(qP). This is the 
problem studied by Willis & Acton (1976), who obtained approximate formulae for 
the coefficients of the qP terms in the expressions for the elastic moduli, using the 
procedure described in 5. I n  the case of a suspension of rigid particles in an incom- 
pressible matrix, a more accurate estimate of the q52 term for the shear modulus has 
been obtained by Batchelor & Green (19723) using the renormalization procedure. 
This latter procedure was also used by Chen & Acrivos (1978) for the determination 
of the effective modulus of compression of a suspension of elastic spheres and for the 
determination of the shear modulus for rigid spheres or spherical cavities embedded 
in an elastic matrix. However, in this case there are a number of possible renormalizing 
quantities, a point which we shall discuss a t  the end of this section. 

The local stress tensor o is the counterpart of the flux density F, and (0 )  is related 
to a particle average by an expression of the form 

(6.1) 
where d(x)  = O(X) if x lies in the matrix, while if x lies in a particle, a0(x) denotes the 
stress which would be obtained a t  x if that  particle could be replaced by matrix 
material, with the strain at x held fixed. Thus the quantity ( 0 0 )  is the counterpart 
of - k(VT), i.e. the stress in the matrix material for a uniform strain equal to  the 
average strain in the composite material. The particle dipole strength is here a second- 
order tensor, given by 

(4 = (GO) + n w ,  

S =I T d V ,  (6.2) 
VP 

where 7 = a--0 (6.3) 
is termed the ‘polarization stress’ (Willis & Acton 1976). 
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In order to calculate the average stress (a) (and hence the elastic moduli) correct 
to O(qP), we require a formula for (S), correct to O($). The starting point for the 
derivation of this formula is an integral expression for the displacement u st a point 
in the matrix, namely 

-Ir { Q p , ( x  - x’ ) r m k  n k  - U m ( X ’ )  J m k p ( x  - x’) n k }  dA (x’) (8.4) 

The tensor G is the Green’s function for an infinite elastic matrix, defined by (Landau 

where ,u and v are the modulus of rigidity and Poisson’s ratio for the matrix. The 
quantity Gpm(x) F, is the displacement at x caused by the application of a point force 
a t  the origin, and Jmkp Pm is the stress associated with that displacement field. 

On taking the gradient of (6.4) and using the fact that the quantities u and u 
which appear in the macroscopic boundary integral may be replaced by their averaged 
values (a) and (u), we obtain an expression for the strain e ( x )  which is analogous 
to the expression (3.7) for the temperature gradient. By using the divergence theorem 
to oonvert the macroscopic boundary integral in the expression for e ( x )  to a volume 
integral, we get 

e p q ( x )  == ( e p q )  + ( s p q )  + Gpq(smm) + P p q m k ( X - X ’ )  T h k  V(x’)  
i V i  

- n / V , p p q m k ( x - x ’ )  ( X m k ) d V ,  (6.6) 

where ql = ( 4 - 5 ~ ) / 1 5 ( 1 - ~ ) ,  qa = - 1 / 3 0 ( 1 - ~ )  (6.7) 

and 

The result (6.6) is equivalent to the expression (2.7) in Willis & Acton’s (1976) paper. 
As in the case of the conduction problem ( 3  3), we seek an expression relating the 

dipole strength S of a sphere in a statistically homogeneous suspension to integrals 
over the surrounding particles. By taking the average of this expression, with first 
one and then two spheres held fixed, we obtain an expression for (S), correct to O($). 

The required expression for S is obtained with the aid of a FaxBn-type formula 
for the dipole strength of a sphere placed in an ambient strain field, viz. 

where 

and V, is the volume of the particle. Here e E  denotes the strain tensor a t  x in the 
absence of the particle and (IeEll denotes its trace, p p  and K p  are the modulus of 
rigidity and modulus of compression of the particle and K i s  the modulus of com- 
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pression of the matrix. The formula (6.8) is derived by using the reciprocal theorem 
together with the expression for the (uniform) stress in a sphere placed in a uniform 
strain field (Eshelby 1957); the procedure is analogous to that used in the derivation 
of the Faxh-type formula (3.14) for the thermal dipole strength, described in the 
appendix. 

The dipole strength of sphere j in a statistically homogeneous suspension is given 
by an expression of the form (6.8), where 

The quantity e E ( x )  may be thought of as the strain tensor which would be obtained 
at x if the reference sphere were replaced by matrix material with the stress in the 
surrounding particles held fixed. 

On expanding eE(x)  in (6.8) in a Taylor series about the centre of the reference 
sphere, which we take as the origin, and using the fact that V4uE = 0 and V211eEII = 0,  
we get 

(6.11) 

where a is the radius of the particle. From the expression (6.4) for the displacement, 
we find that V 2 e E  is given by 

Sj = +na3[(aK-%Pp) IjeE(0)II I + 2Pp(eE(O) +i+,a2V2eE(0))], 

V'efq(0) = V2Ppqrnk(X)~,kdV(X). (6.12) 
i s r'i 

i+j 

Note that there are no macroscopic boundary terms in this expression, for the terms 
in the integral over I? drop off like llr4 and the integral may thus be neglected in the 
limit as V' becomes infinite. 

By combining (6.10) and (6.12) with the Faxen-type formula (6.11), we obtain an 
expression, analogous to (3.15), relating the dipole strength of the reference sphere to 
integrals over the surrounding spheres. However, as this expression is rather cumber- 
some we shall work witheach of (6.10)) (6.11)  and (6.12) separately. Taking the average 
of (6.11), we get 

(S) = +77a3E(aK- #Pp) /I(eE(o))II I + 2Pp((eE(0)) +j$a2(v2eE(o)))l,  (6.13) 

and on combining the expressions obtained by averaging (6.10) and (6.12) first with 
one sphere fixed a t  the origin and then with another fixed a t  r,  we obtain 

and 

2 FLM 91 
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An expression for the average dipole strength of an  elastic sphere in a statistically 
homogeneous suspension is obtained by substituting the expressions (6.14) and (6.15) 
for (eE> and (V2eE) in (6.13), which gives 

is the average dipole strength in the limit as $+ 0. 
As in 5, we can show that 

(S(Olr)) = S(Olr)+0(4), (6.18) 

where S(0lr) denotes the dipole strength of one of a pair of spheres separated by r 
and alone in an infinite matrix with an ambient uniform strain ( e ) .  On substituting 
(6.18) in (6.16), and replacing (S) by So in the integrand, we get 

thus (S) may be calculated with the aid of solutions to the two-sphere problem. I n  order 
to  obtain exprewions for the effective elastic moduli from (6.19) we must consider the 
general form of S(O]r). 

The elasticity equations and the boundary conditions for the two-sphere problem 
are linear, hence S(0l r) is linear in ( e ) .  From symmetry considerations it can be shown 
that the deviatoric part of S(0l r) is given by an expression of the form 

SD(Olr)/#na3P,u = (1 + A ) ( e D ) + B [ F ( P . ( e D ) ) +  (P.(eD))?-+F.(eD).?l] 
+C?.(eD) .F+Dil(e)li @ F - + I ) ,  (6.20) 

and similarly the isot,ropic part of S(0l r) may be written in the form 

/jS(O(r)[//4na3aK = (l+E)I/(e)I/+F(F.(eD).F), (6.21) 

where F = r / r  and (eD) = ( e )  - +/I (e) 111. The quantities A ,  B ,  C, D,  E and F depend 
only on the scalar variables r/a, K / p ,  ,up//& and Kp/,u. I n  the limit asr --f co, S(O] r) +So, 
and by comparing (6.20) and (6.21) with the expression (6.17) for So i t  can be seen 
that each of the quantities A ,  B, C, D, E and F approaches zero as r becomes large. 
The expressions (6.20) and (6.21) are equivalent to the expression (19) for S(0J r) given 
by Chen & Acrivos (1978); the scalar functions F ,  G, K ,  L, M and N which appear 
there may be related to the quantities A,  B ,  C, D, E and F used here by simply 
equating the coefficients of like terms in the expressions for S(0Ir). For the case of 
rigid particles and a rigid matrix, the quantities A ,  B and C are equal to  the functions 
K ,  L and M defined by Batchelor & Green (1972a) for the analogous problem of two 
spheres immersed in a linear flow field. 



The transport properties of suspensions of particles 35 

If the pair-probability function has the isotropic form 

P ( r ( O )  = v ( r )  (6.22) 

we may simplify the integral in the expression (6 .19)  for ( f l p u )  by first performing 
the integration with respect to the direction of r. (We are free to use any order of 
integration since the integral in (6 .19)  converges.) I n  this case the renormalizing term 
vanishes, and we get, using (6 .20)  and (6 .21) ,  

where G ( r )  = A ( r )  + $B(r) +&C(r).  (6.24) 

On substituting (6 .22)  and (6 .23)  in the expression (6 .19)  for the average dipole 
strength, we find 

J E(r)  p(r) r2dr. G(r)  q(r )  r2dr + I/ ( e )  I/ I 4 7 4 a K  
r=2a  

+ (eD) 874Pp 1 
r = 2 a  

On substituting this expression for (S) in the formula (6 .1 )  for the average stress in 
the suspension, we obtain an expression of the form 

(0 )  = K*l/(e)/l I + 2p*(eD),  (6.25) 

where the effective modulus of compression K* and the effective shear modulusp* 

and (6.27) 

Willis & Acton’s (1976) expressions (5 .20)  and (5.21) for the effective moduli have 
the same form as the expressions derived here, although in their case the functions 
E and G are replaced in the integrals by far-field forms correct to O(a7/r7) .  

For the case of rigid particles in an incompressible matrix our expression for the 
shear modulus reduces to 

(6.28) 

which is identical to  Batchelor & Green’s (1972b) expression (5 .6 )  for the effective 
viscosity of a suspension of rigid spherical particles in a pure straining motion, which 
was obtained using the renormalization procedure. 

Our expressions for the effective moduli are also in agreement with Chen & Acrivos’s 
(1978) formulae (equations ( 2 4 ) )  (25 )  and (26 )  of that paper).t I n  attempting to 

t For the case of a uniform pair distribution, viz. p ( r )  = n. for T > 2a, Chen & Acrivos have 
evaluated the coefficient of @ in the expression for K* over a range of ,uD/p values; their results 
for the shear modulus p* are less complete for they have considered only the cases of rigid 
particles and spherical cavities. For e1ast.k particles, Willis & Acton’s ( 1976) approximate 
expression for p* may be used. 

2-2 
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calculate the effective modulus of compression by the renormalization technique Chen 
& Acrivos encountered some difficulties in selecting the renormalizing quantity, for 
in this problem it  is possible to  obtain three different convergent expressions for K * .  
These difficulties arise from the fact that  the authors were concerned with the case 
of a pure compression, viz. 

(e )  = - e l .  

I n  order to  show how i t  is possible to  obtain more than one expression for K ” ,  we 
consider the renormalizing term 

#[(aK-  spqPkkmn(r) 8?k + 2ppPpqmn(r) #kn], (6.29) 

which appears in the integrand in the expression (6.19) for (AS,,). I n  the case of pure 
compression, the expression ( 6 . 1 7 )  for the dipole strength of an isolated sphere 
reduces to 

SO = - 4nu3aKe I 

and hence the renormalizing term (6 .29)  becomes 

- 4nu3#aKe[(aK - 8pp) Pkkrnrn + 2ppppqmml. 

Since only the isotropic part of (S) is required in order to calculate K* (see the expres- 
sions (6 .1 )  and (6.25) for (a)), we take the trace of the above expression, and obtain 

- 1 2na3#a2K2ePkk,,. 

This term is identically zero, since Pkkmrn = 0. Thus the renormalizing term in the 
expression for /I(S)ll vanishes in the case of pure compression, and from (6 .19)  we get 

(6.30) 

where 

Although the renormalizing factor has vanished, the above integral converges, since 

8 , , (0 l r ) - -8& = constant x Pqqpp(r)+O(r-*)  = O(r-4) as r+m. 

If instead of using the expression (6.19) for ( S )  we use the incorrect equation 

(S) = SO+ 1 ( S ( O l r ) - S o ) p ( r l O ) d V ,  

based on the assumption that only pair interactions are important [cf. ( 2 . 1 ) ] ,  then 
on taking the trace of this expression, we get 

ll(S)ll = llSOll + 1 (Ils(Olr)/l- l l ~ o l l ) P ( r l o ) ~ ~ .  (6.31) 

Although this expression converges, i t  can be seen on comparing i t  with the result 
(6.30) (which takes into account the contribution from the macroscopic boundary) 
that the term #lJ Sol/ is missing. 

I n  order to select the correct renormalizing quantity, Chen & Acrivos use Jeffrey’s 
(1974) group expansion for the dipole strength to show that only one renormalizing 
quantity gives a convergent expression for the three-sphere term (of order #”. The 
method presented here is free of such complications, for the renormalizing quantity 
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in the expression for (S) arises naturally from a consideration of the macroscopic- 
boundary term in the integral expression (6.4) for the displacement. 

I am most grateful to Professor G. K. Batchelor and Dr D. J. Jeffrey for their 
many useful comments on earlier versions of this paper. 

Appendix. The derivation of the FaxCn-type formula (3.14) for the 
dipole strength 

The required formula for the dipole strength of a sphere placed in an ambient field 
T E  is obtained with the aid of Green's Second Identity (Protter & Weinberger 1967) 
for the case of a single particle in an infinite matrix, viz. 

$A(TlF2-T2Fl) . i idA = (T,F,-T,F,). i idA, (A 1) 
~ A P  

where T, and T, are two temperature fields and F ,  and F ,  the corresponding flux 
densities. Here A,  denotes the surface of the particle, and A denotes any closed surface 
enclosing A,. For our purposes it proves convenient to choose A as a large sphere, 
centred on the particle. 

Let TI denote the temperature field for a sphere placed in the linear ambient field 
G . x ,  and let TI, and S,, denote the temperature field and dipole strength of a sphere 
placed in the ambient field T E .  Our aim is to derive an expression for SII. On 
substituting 

and 

in the Green's identity (A I ) ,  we find that the integral over the large sphere A vanishes 
as the sphere becomes infinite (since T, and T, are O(r- , ) )  and hence the identity 
(A 1 )  yields 

T ~ ( x )  = T,(x) -GI  x 

T,(X) = TII(X) - TE(X) 

( T, F1- TI F 2 ) .  iidA = 0 .  (A 2) 
f - 4 ~  

Applying the divergence theorem to this surface integral, we get 

9 (VT,.F,-VT,.F,)dV = 0,  
V ,  

and on using the fact that 

within the particle, we obtain 

J . rII .GdV-J TI.VTEdV = 0, 
P'P VP 

where T = (1  - a) kVT. Hence the dipole strength S,, is given by 

SII . G = TI . VTEd V .  s, 
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From the expression for TI (given in Jeffrey’s 1973 paper) we find 

at  points in the particle. On substituting this result into (A 3) and using the fact that 

we obtain the desired result 

SII = -4na3- (a-  kVTE(xO) ,  
(a+ 2 )  

where xo denotes the centre of the sphere. 
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